Fast Diagnostics for Bloodstream Infections and their Role in Sepsis

Maureen Spencer, M.Ed, BSN, RN, CIC, FAPIC Infection Preventionist Consultant Director, Clinical Implementation Accelerate Diagnostics, Inc.

www.maureenspencer.com

Disclosure

Maureen Spencer is employed by Accelerate Diagnostics, Inc.

Objectives:

- Describe 3 rapid molecular diagnostics systems that provide organism identification within a few hours
- Describe 3 methods for determining the antibiotic sensitivity of microorganisms
- Describe the role the Infection Preventionist can play in assuring rapid diagnostic results are provided to the clinicians for treatment of bloodstream infections and sepsis

Laboratory Results are Vital to Healthcare

70% of Medical
Decisions are Based
Upon a Laboratory's
Results

70% of Medical
Decisions are
Based Upon a
Laboratory's
Results

Laboratory
Represents only 5%
of Healthcare Costs

 While laboratory costs are a small part of a hospital operating budget, it has an substantial influence over the entire budget

Accurate and Timely Results from the Lab Correct patient treatment executed quickly

- Improve patient outcome
- No wasted medical/labor costs
- Increase patient satisfaction

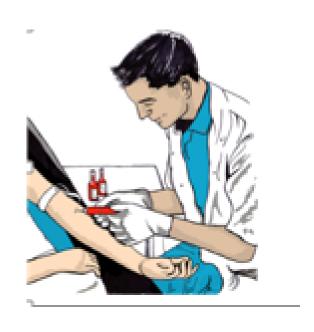
- Higher patient throughput drive revenue
- Better resource utilization
- Improved hospital financials

IDSA: Diagnostic Technology (2013)

- Despite advances in diagnostic technology, there is an urgent need for tests that are:
 - easy to use
 - identify the microbe causing the infection
 - determine whether it is drug resistant
 - provide results faster than current tests
- Faster, more accurate tests would help ensure that patients are receiving:
 - the best treatment for a variety of infectious diseases
 - guide more effective infection control practices
 - improve the tracking of outbreaks.
- Better tests would also help protect our dwindling supply of effective antibiotics by reducing their misuse

Typical High Tech Lab Today

Molecular Lab – Labs of the Future



Blood Culture Journey

Evaluate Blood Cultures Procedures and Contamination Rates

Blood Culture – Key Elements - Competencies

Selection of blood culture draw site Application of aseptic technique Collection of adequate volume of blood Collection of sufficient blood culture sets Appropriate timing of blood culture collection

Blood Culture – Aseptic Technique

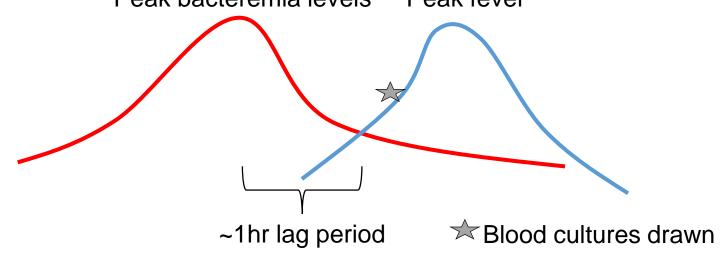
Aseptic technique is used to avoid contamination of blood culture bottles by normal skin bacteria

The skin is cleansed with 70% isopropyl or ethyl alcohol and allowed to air dry.

The skin is then cleansed with a 2% chlorhexidine solution and allowed to air dry.

Aseptic technique is used during venipuncture to prevent contamination of cleaned skin.

Finally, the blood culture bottle tops are cleansed with alcohol before blood is introduced.



Blood Culture – Timing of Culture

- Optimal timing of BC collection is just before the onset of a shaking chill
 - Symptoms of bacteremia lag ~1 hour behind peak bacteria levels in the blood
- Timing is difficult to anticipate, so common practice is to draw BC when fever is detected
 - Two blood culture sets obtained at this time
- Optimally, BC should be drawn before antimicrobial therapy is given
 Peak bacteremia levels Peak fever

Blood Culture Contamination

Who draws them? Where are they obtained? Why contamination?


- BC contamination clinically significant problem that results in extra expense and patient harm
- Case-control study in the UK found BC contamination was associated with 5.4 extra hospital days at a cost of approximately \$7500 USD
- Similarly, in the US, Gander and colleagues observed excess charges of \$8720 per contamination event
- Blood culture contamination is associated with unnecessary antibiotic treatment in approximately 30%–40% of patients – can lead to adverse outcomes

[•] Gander RM, Byrd L, DeCrescenzo M, Hirany S, Bowen M, Baughman J. Impact of blood cultures drawn by phlebotomy on contamination rates and health care costs in a hospital emergency department. J Clin Microbiol **2009**; 47:1021–4.

[•] Alahmadi YM, Aldeyab MA, McElnay JC, et al. Clinical and economic impact of contaminated blood cultures within the hospital setting. J Hosp Infect 2011; 77:233–6.

[•] Lee CC, Lin WJ, Shih HI, et al. Clinical significance of potential contaminants in blood cultures among patients in a medical center. J Microbiol Immunol Infect 2007; 40:438–44.

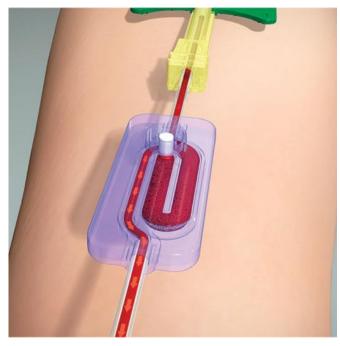
Cost of Contaminated BC

- Treatment with broadspectrum IV antibiotics requiring hospital stay
- Delay in hospital discharge and longer Length of Stays (LOS)
- Additional bed, pharmacy and laboratory (micro, chemistry, radiology) costs
- Contaminated BC may meet the CLABSI surveillance definition and not be a true case - \$\$ CMS Penalties
- Est. >\$8000 per case

TABLE 3. Patient charges associated with blood culture results^a

Blood culture designation	No. of patient episodes	Median charge (25th quartile, 75th quartile)
Negative	960	\$18,752 (\$17,046, \$20,315)
False positive	120	\$27,472 (\$21,063, \$37,841)
True positive	153	\$51,055 (\$39,957, \$69,459)

Δ \$8,720

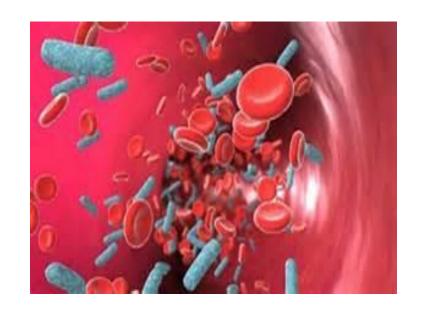

Calculate the cost of contaminated blood cultures for the Infection Control Committee each month

^a All inpatient charges were tallied; 61 cost centers were surveyed, including laboratory, pharmacy, and radiology departments.

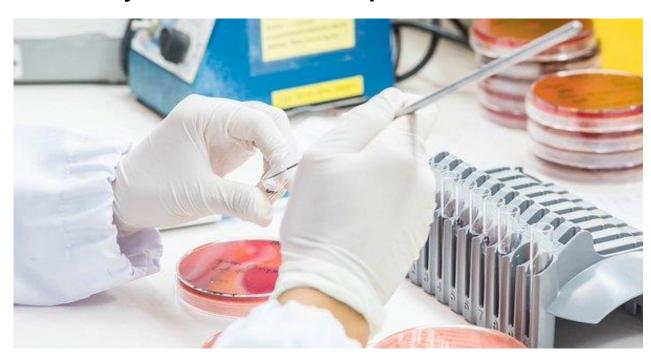
Example of Contaminated Blood Culture Dashboard with Cost (\$8720/case)

LABORATORY SERVICES:	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Total	Cost	Benchmark
BLOOD CULTURE CONTAMINATION	N														
# Blood Cultures Drawn		1677	1753	1662	1658	1359	1463	1482	1392	1548	1540		15534		
Total # of Contaminants		58	47	50	54	42	46	57	41	51	57		503	\$4,386,160	
Blood Culture Contamination Rate		3.5%	2.7%	3.0%	3.3%	3.0%	3.1%	3.8%	2.9%	3.3%	3.7%			3.2%	<u>≤</u> 2.5 %
# Blood Cultures Drawn by Lab		525	642	666	727	744	721	854	812	903	891		7485		
Total # of Contaminants		16	15	11	17	18	16	18	18	18	26		173	\$1,508,560	
Lab Drawn Contamination Rate		3.1%	2.3%	1.7%	2.3%	2.4%	2.2%	2.1%	2.2%	2.0%	2.9%			2.3%	<u>≤</u> 2.5 %
# Blood Cultures Drawn by ED		846	737	667	564	441	405	787	387	415	434		5683		
Total # of Contaminants		31	19	23	24	20	19	33	20	24	22		235	\$2,049,200	
ED Drawn Contamination Rate		3.7%	2.6%	3.5%	4.3%	4.5%	4.7%	4.2%	5.2%	5.8%	5.1%			4.4%	<u>≤</u> 2.5 %
# Blood Cultures Drawn by Nurse:	S	51	62	41	60	1	131	13	48	37	4		448		
Total # of Contaminants		2	2	1	2	0	5	2	1	1	0		16	\$139,520	
Nurse Drawn Contamination Rate		3.9%	3.2%	2.4%	3.3%	0.0%	3.8%	15.4%	2.1%	2.7%	0.0%			3.7%	≤ 2.5 %
# Blood Cultures Drawn by WFED		190	213	175	156	134	111	128	64	105	107		1383		
Total # of Contaminants		7	7	7	5	2	2	10	1	5	6		52	\$453,440	
Weslaco FED Contamination Rate		3.7%	3.2%	4.0%	3.2%	1.5%	1.8%	7.8%	1.6%	4.8%	5.6%			3.7%	≤ 2.5 %
# Blood Cultures Drawn by FED		65	99	113	151	39	83	88	71	88	104		901		
		7	4	8	6	1	4	1	1	3	3		38	\$141,360	
FED Contamination Rate		3.1%	4.0%	7.1%	4.0%	2.6%	4.8%	1.1%	1.4%	3.4%	2.9%			3.4%	≤ 2.5 %

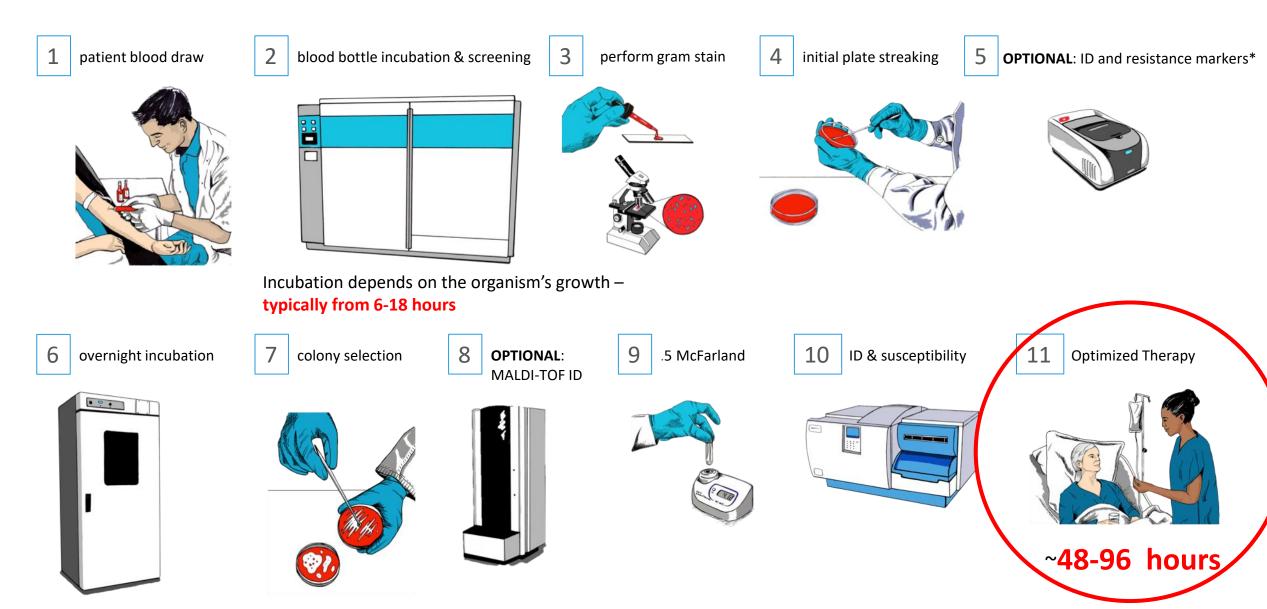
Consider New Blood Culture Diversion Technology to Prevent Contamination



Device #1 Device #2


- Rupp M, et al. Reduction in Blood Culture Contamination Through Use of Initial Specimen Diversion Device. Clin Infec Dis Mar 2017
- Jared Sutton, MPH, CIC. Preventing Blood Culture Contamination using a Novel Engineered Passive Blood Diversion Device APIC. June 13-15, 2018 Minneapolis, MN
- Michael Allain, MS, RN, ACNS-BC, CCRN. A CNS-Led Project That Reduced Blood Culture Contaminations in One Emergency Department to Below Expected Levels. Clinical Nurse Specialist. May/June 2018

Blood Culture Organism Identification


Challenges with Traditional Methods

- ✓ Slow takes days to result
- ✓ Specimen processing
- ✓ Inexpensive \$ for lab not for hospital
- ✓ May have inferior performance

Blood culture Standard of care ID & AST workflow ~48-96 hours

⁸⁻¹² hrs incubation

*ID only and resistance marker technologies are incremental to AST workflow.

Patient impact – Standard of Care Procedures

Antibiotic therapy workflow:

- If bacteremia or sepsis is suspected, empiric therapy started
- Wait on BC bottle positivity
- Next change of therapy at gram stain results (16-24hrs after BC drawn)
 - Gram stain informs on ID of organism only, no antibiotic susceptibilities Resistance Markers may be available but does not assist with targeted therapy
- Change to targeted therapy after antibiotic susceptibility results (another 12-18hrs) **Isolation for** Targeted therapy begins >50 hours after bacteremia/sepsis is suspected MDROs after AST Results **Blood Culture Drawn Possible ABX Targeted** Possible ABX change and Broad spectrum change based on ID ABX started based on Admission based on gram stain empiric therapy started **AST/MIC** final result ■ Blood Draw - often 2-4 antibiotics ■ Blood Culture Gram Stain ■ Isolate Culture AST 10 20 30 40 50 60

Blood Culture Diagnostic Technologies

<u>Identification</u>

- Molecular genotypic PCR <2 hr turn around time (TAT)
- 4 Molecular ID Systems <2 hr TAT

Antibiotic Sensitivity Test (AST)

- 3 Manual traditional AST Broth Dilution, Kirby Bauer, Etest
- 3 Standard Automated ID and AST 2-4 day TAT
- 1 combined phenotypic ID and AST with MICs in <7hrs TAT

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Brief report

A primer on on-demand polymerase chain reaction technology

Maureen Spencer RN, BSN, MEd, CIC^a, Sue Barnes RN, BSN, CIC^b, Jorge Parada MD, MPH, FACP, FIDSA^{c,d}, Scott Brown BSN, MSN, MPH, CIC^e, Luci Perri RN, BSN, MSN, MPH, CIC^f, Denise Uetwiller-Geiger PhD, DLM, ASCP^g, Helen Boehm Johnson MD^{h,*}, Denise Grahamⁱ

^a Universal Health Services Infection Prevention, Boston, MA

^b Kaiser Permanente Infection Prevention, Oakland, CA

^cLoyola University Medical System Infection Control Program and Loyola University Stritch School of Medicine Department of Infectious Diseases, Chicago, IL

d Hines Veterans Affairs Hospital Center for Management of Complex Chronic Care, Hines, IL

e University of Florida/Shands Hospital Department of Infection Control, Orlando, FL

f Perri Consulting, Monroe, NC

⁸ Department of Laboratory Services, John T. Mather Memorial Hospital, Port Jefferson, NY

h Freelance Medical Writer

ⁱDDG Associates Alexandria, VA

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Practice Forum

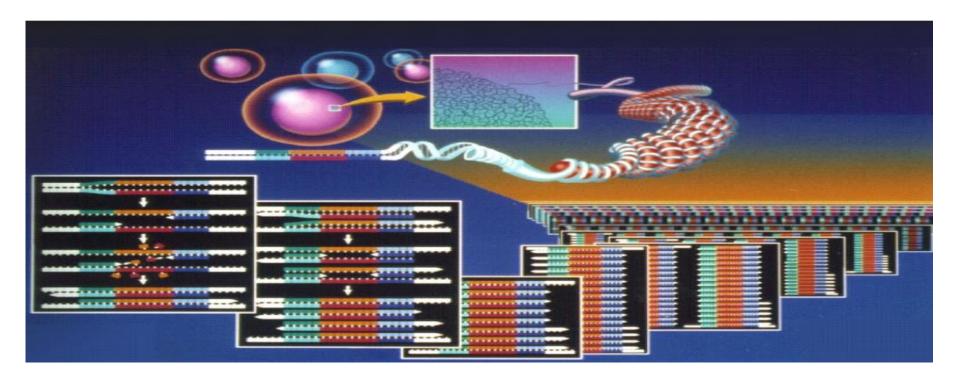
Rapid diagnostics for bloodstream infections: A primer for infection preventionists

Charles E. Edmiston PhD, SM(ASCP), CIC ^a, Robert Garcia BS, MT, CIC ^b,
Marsha Barnden RNC, MSN, CIC ^c, Barbara DeBaun RN, MSN, CIC ^d, Helen Boehm Johnson MD ^{c,*}

Medical College of Wisconsin, Milwaukee, WI

b Stony Brook University Medical Center, Stony Brook, NY

c Adventist Health, Roseville, CA


d Cynosure Health, Westford, MA

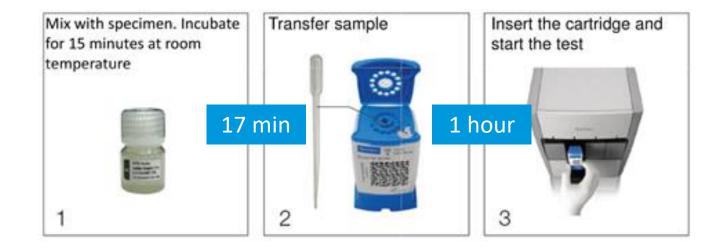
e Freelance Medical Editor, Vero Beach, FL

ID #1 Polymerase Chain Reaction (PCR)

A single or a few copies of a piece of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence

- Offers accuracy & specificity
- Offers speed
- Offers detection at even very small amounts of organisms

#1 Rapid PCR



#1 Rapid PCR

Workflow

Test

Differentiation

one, two, four, 16, 48, or 80-module configuration

#1 PCR Tests – One for Blood Cultures

Workflow

Test

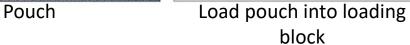
Differentiation

Type of Infection	Test		
Healthcare	MRSA		
Associated	SA Nasal Complete		
\$50-65 / test	MRSA/SA SSTI		
330-03 / test	Blood Culture MRSA/SA		
	C. difficile		
	C. difficile/Epi		
	vanA		
	Norovirus		
	Carba-R		

Type of Infection	Test	
Critical	MTB/RIF	
Infectious Disease	Flu	
2.00000	Flu/RSV XC	
	EV	
	Ebola	

Type of Infection	Test
Sexual Health/Woman's	CT/NG
Health	GBS LB
	GBS
	TV

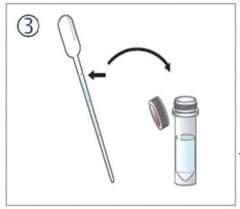
#2 Rapid Organism Identification Blood Culture Identification (BCID)

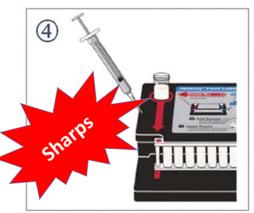

BCID Panel tests for a comprehensive set of 24 gram positive, gram negative and yeast pathogens and 3 antibiotic resistance genes associated with bloodstream infections. The BCID Panel detects and identifies the most common causes of bloodstream infections

#2 Rapid ID

5 min+ Hands-On 1.25h TAT

Workflow


1


Inject hydration solution

Menu

Add patient sample to buffer

Inject sample

Load pouch

#2 Rapid ID Panels

Workflow

Menu

Differentiation

Gram Pos. Bacteria ID & Resistance Markers

Bacterial ID

- Enterococcus
- Listeria monocytogenes
- Staphlococcus
 - Staph. aureus
- Streptococcus
 - · Strep. agalactiae
 - · Strep. pyogenes
 - Strep. pneumoniae

Resistance markers

- vanA (vancomycin)
- vanB (vancomycin)
- mecA (MRSA indicator)

Gram Neg. Bacteria ID & Resistance Markers

Bacterial ID

- Acinetobacter baumannii
- Haemophilus influenzae
- Neisseria meningitidis
- Pseudomonas aeruginosa
- Enterobacteriaceae
 - Enterobacter cloacae complex
 - Escherichia coli
 - Klebsiella oxytoca
 - Klebsiella pneumoniae
 - Proteus
 - Serratia marcenscens

Resistance markers

KPC – carbapenem resistance

#3 Rapid ID

Results in ~ 2.5 hrs

System enables clinicians to rapidly identify the pathogens responsible for some of the most complex, costly, and deadly infectious diseases

#3 Rapid ID

Workflow

Load each consumable into the Processor SP

10 min+ Hands-On ~2.5 hr TAT

Menu

Differentiation

Remove the cartridge

Disassemble test cartridge

Scan barcode on slide, then place in Reader

#3 Rapid ID Panel

Workflow

Menu

Differentiation

Gram Pos. Bacteria ID & Resistance Markers

Bacterial ID

- · Enterococcus faecalis
- · Enterococcus faecium
- Listeria spp.
- Staphylococcus spp.
 - · Staph. aureus
 - · Staph. epidermis
- Staph. lugdunensis
- Streptococcus spp.
 - Strep. anginosus Group
 - · Strep. agalactiae
 - Strep. pyogenes
 - Strep. Pneumoniae

Resistance markers

- vanA (vancomycin)
- vanB (vancomycin)
- mecA (MRSA indicator)

Respiratory Panel

- Identification of a broad panel of viruses and bacteria commonly responsible for respiratory infections from
- nasopharyngeal swabs (NPS)

Gram Neg. Bacteria ID & Resistance Markers

Bacterial ID

- Acinetobacter spp.
- · Citrobacter spp.
- Proteus spp.
- Enterobacter spp.
- Pseudomonas aeruginosa
- Escherichia coli
- Klebsiella oxytoca
- Klebsiella pneumoniae
- Serratia marcescens

Resistance markers

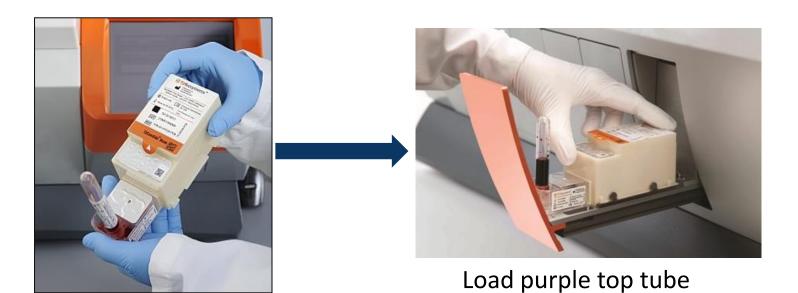
- KPC (carbapenemase)
- CTX-M (ESBL)
- NDM (carbapenemase)
- IMP (carbapenemase)
- OXA (carbapenemase)
- VIM (carbapenemase)

Gastrointestinal Panel

- · C. difficile
- Enteric Pathogens

#4 Rapid Biosystem – for Yeast and Bacteria – direct from blood specimen)

Fastest species identification of major bacteria directly from whole blood without the wait for blood culture


#4 Rapid Biosystems

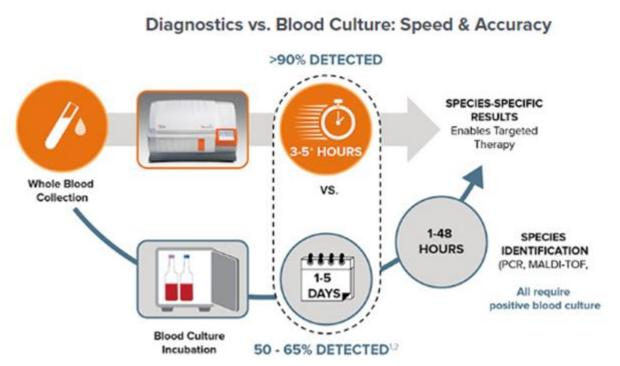
Workflow

Technology

Menu

Blood Culture Assay

- (1) Build Cassette
- (2) Remove cap on blood
- (3) Invert into Cassette


#4 Rapid Biosystem Technology

Workflow

Technology

Menu

Blood Culture Assay

#4 Rapid Biosystem Menu and Cost

Workflow

Technology

Menu

Candida Panel

- Candida albicans / tropicalis
- Candida parapsilosis
- Candida krusei / glabrata

Bacteria Panel

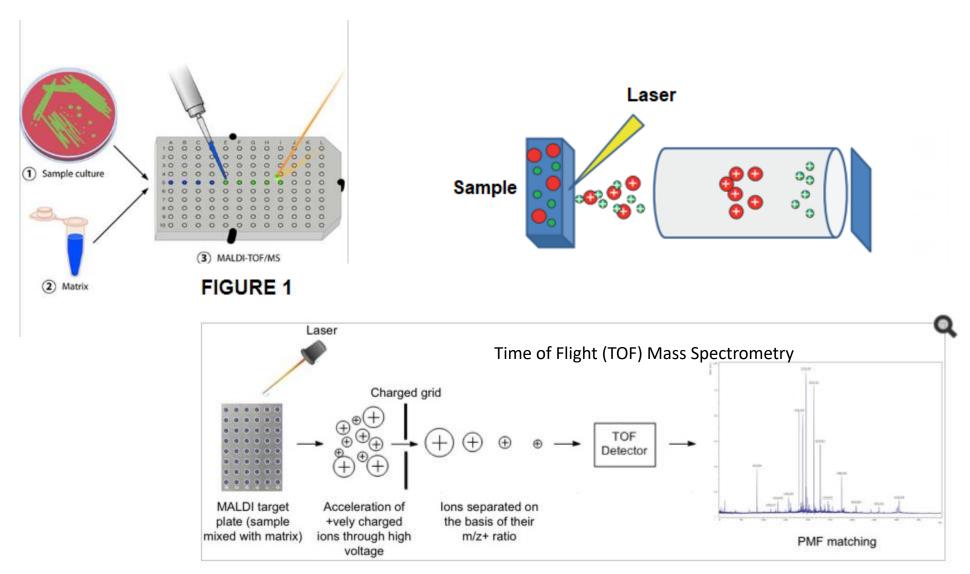
- E. faecium
- S. aureus
- K. pneumoniae
- P. aeruginosa
- E. coli

Blood Culture Assay

\$200-250 / test

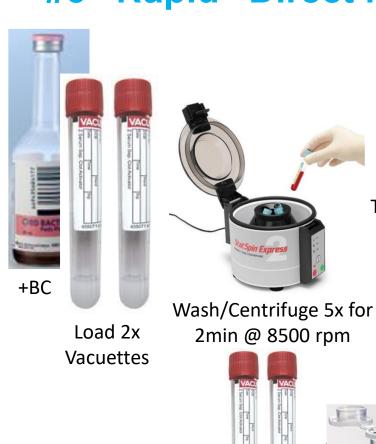
#4 Direct Diagnostics utilize proprietary <u>Magnetic Resonance</u> technology to enable faster and more accurate identification for pathogens that cause sepsis

#5 Rapid ID

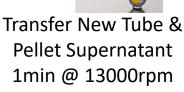


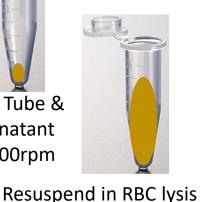
#5 Rapid ID - MALDI-TOF MS

- Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry
- ID of bacteria, yeast and fungi
- Identification by *signature* high-abundance proteins (primarily ribosomal proteins)
- Signature protein patterns are compared / matched to an extensive open database



#5 ID MALDI-TOF




Peptide mass fingerprinting

#5 "Rapid" Direct MALDI Workflow

solution

Inc. 10min @ 35C

Pellet Supernatant 2min @ 13000rpm

Remove liquid Respin 2min Remove liquid again...

Then, follow standard MS work-up...

Combine Suspensions

Pellet RBCs 1min @ 1000rpm

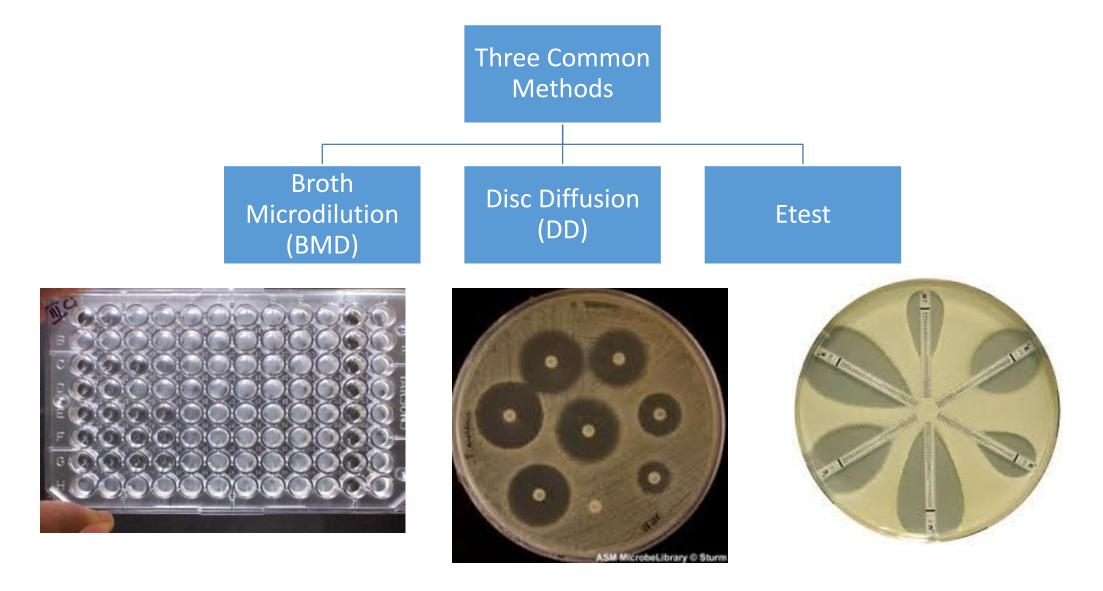
Wash and Re-Pellet 1min @ 13000rpm

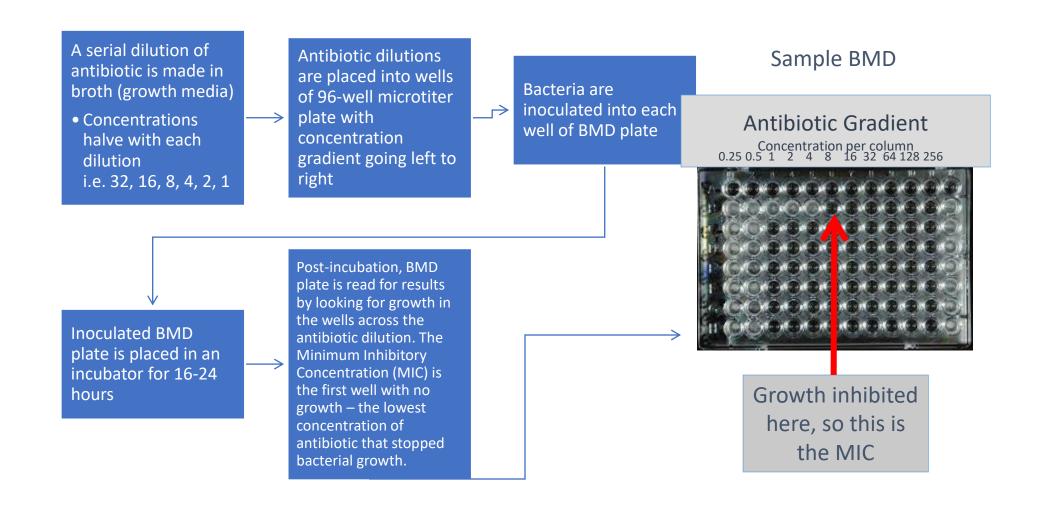
Pellet Supernatant

1min @ 13000rpm

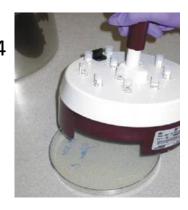
Resuspend in 70% FtOH

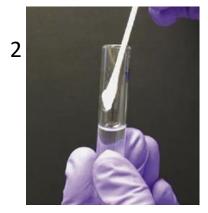
35-60min workup / sample Requires a highly skilled tech


Antimicrobial Sensitivity Tests (AST)



3 Manual AST


#1 Manual AST – Broth Micro Dilution (BMD) Workflow


#2 Manual AST - Disc Diffusion Workflow

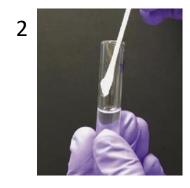
Select isolated bacterial colonies

Place discs containing antibiotic on plate



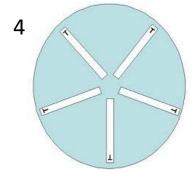
Make a 0.50 McFarland (Bacterial suspension)

Inoculate the agar plate



Measure the zone of inhibition

#3 Manual AST – Etest workflow


Select isolated bacterial colonies

Make a 0.50 McFarland (Bacterial suspension)

Inoculate the agar plate

Place Etest strips on agar plate

Incubate the agar plate overnight

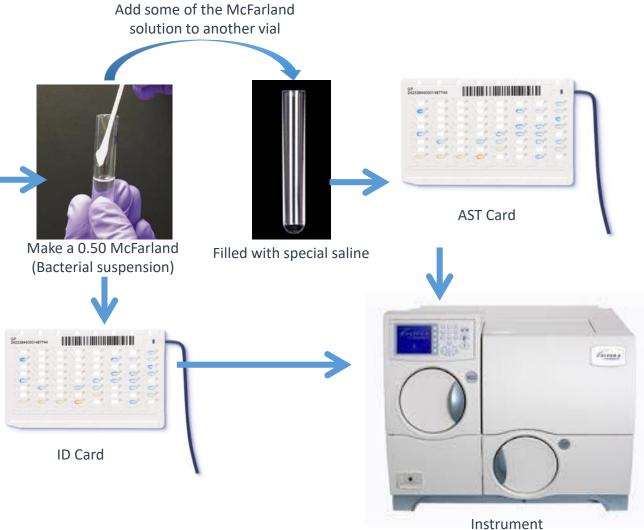
6

Measure the zone(s) of no growth

Automated AST - Standard of Care (SOC)

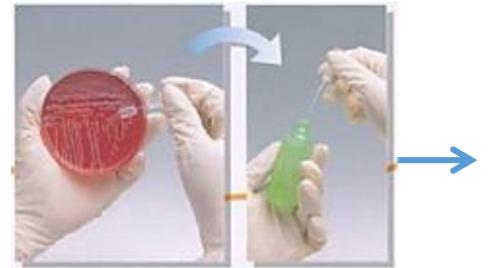
System #1

System #3



System #2

Automated AST- #1 workflow


Select isolated bacterial colonies

Hands-on Time: 10-20 minutes
Time to Results: 12-18 hours

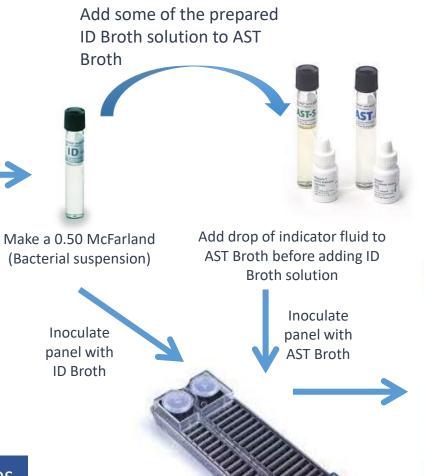
Automated AST #2 Workflow

Select isolated bacterial colonies with PROMPT Inoculation System

Suspend bacteria in inoculum solution

Hands-on Time: 10-20 minutes Time to Results: 12-18 hours

Use system to inoculate 96-well panel



Place panel in instrument

Automated AST #3 Workflow

Select isolated bacterial colonies

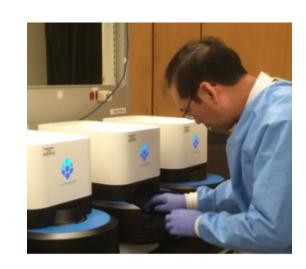
AST Panel

Hands-on Time: 10-20 minutes Time to Results: 12-18 hours

AST Instrument

#4 – New Fast Antibiotic Sensitivity System that provides ID and AST ~7hrs

Direct from Positive Blood Culture (does not require colony isolation)

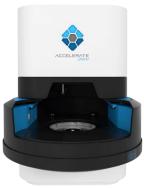

Direct from Positive Blood Culture

Fast Results

- Identification in under 90 minutes using
 Fluorescence In-situ Hybridization (FISH)
- Susceptibility reported ~5 hours after ID
- ~7 hours to microbiology report

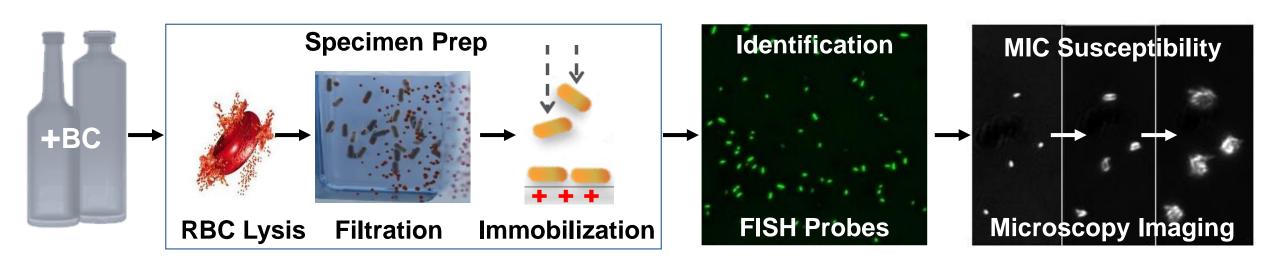
Easy to Use

- <2 min hands-on time
- Bring testing closer to the patient

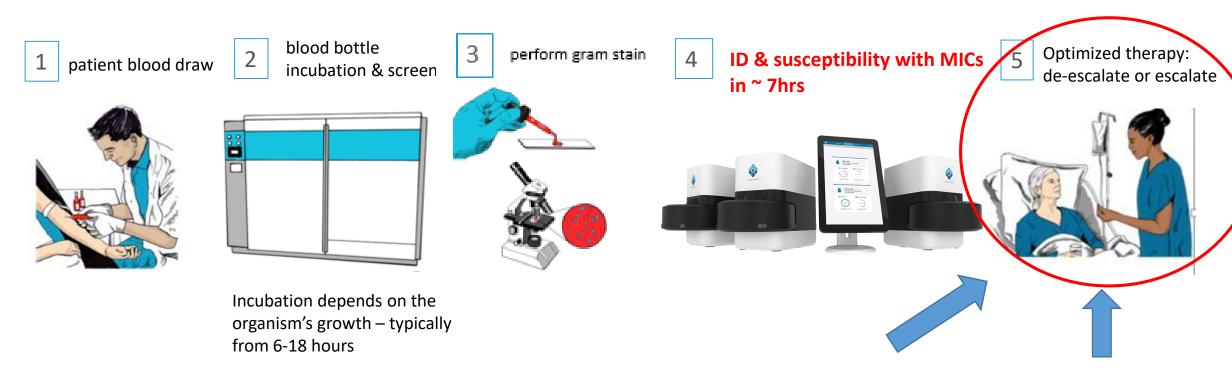

FDA cleared February 23, 2017

Fast ID and AST BC System

- 1-4 module(s)
- Control & Analysis PCs
- Touchscreen monitor


Module

- Automated pipetting robot
- Digital camera
- Custom microscope



Kit

- 48 flow-channel cassette
- Reagent cartridge
- Sample vial

Accelerate Pheno™ System = FAST Workflow

De-escalate or escalate empiric antibiotic therapy

Place patients with MDROs on isolation precautions at ~7 hours

Archives of Clinical Microbiology ISSN 1989-8436

2018

Vol.9 No.3:83

DOI: 10.4172/1989-8436.100083

A Comprehensive Review of the Present and Future Antibiotic Susceptibility Testing (AST) Systems

Sachidevi Puttaswamy^{1*}, Sagar Kishore Gupta², Hariharan Regunath³, Leo Patrick Smith⁴ and Shramik Sengupta¹

Received date: May 22, 2018; Accepted date: May 28, 2018; Published date: June 04, 2018

¹Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA

²University of Missouri Health Care, Columbia, MO 65211, USA

³Department of Medicine - Divisions of Pulmonary, Critical Care and Infectious Diseases, University of Missouri, Columbia, MO 65211, USA

⁴Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA

^{*}Corresponding author: Sachidevi P, Research Assistant Professor, Department of Bioengineering, University of Missouri, Tel: (619) 307-9318; E-mail: puttaswamys@missouri.edu

Table 1 Summary of the current, emerging and future AST technologies.

Table 1 Summary of the current, emerging and future AST technologies.			
System	Methodology	Time taken for AST	Direct from cample
Manual systems			
Broth microdilution	Media (in mi) containing different antibiotics tested against pathogen of interest	24 hours	No
Broth microdilution	Media (in µi) containing different antibiotics tested against pathogen of interest	24 hours	No
Agar dilution	Antibiotic incorporated into agar plates and bacteria inoculated on surface	16-20 hours	No
Disk Diffusion	Antibiotic impregnated filter discs placed on agar surface pre-inoculated with pathogen	16-24 hours	No
Etest	Plastic strip impregnated with gradually decreasing concentrations of antibiotic placed on agar surface pre-inoculated with pathogen	24 hours	No
Automated systems			
Vitek system	Measures light attenuation by optical scanner for growth/no growth detection in micro-wells with different antibiotics	6-36 hours	No
BD Phoenix system	Uses redox indicator for detection of growth in micro-well panels containing various antibiotics at different concentrations	4-16 hours	No
Sensitifre	Fluorescence technology used to monitor activity of enzymes produced by test organism emitting fluorescence	18-24 hours	No
Microscan Walkaway	Colorimetric readings using photosensors for optical detection of bacteria	4.5-7 hours	No
Emerging Technologies			
BacterioScan FLLS	Uses laser light source with scattered intensity measurements for accurate OD readings in the presence of antibiotics	6-18 hours	Yes
Smarticles Technology	Detects increase in luciferase activity due to bacterial growth from plasmids containing DNA probes inside phages	< 4 hours	Yes
Accelerate Pheno system	Dark-field microscope used to image cells to record growth vs no growth vs cell lysis	~ 7 hours	Yes
LifeScale system	Changes to cantilever vibration changes measured by sensor and correlated to biomass can determine MIC	~ 3-4 hours or longer	No
Future Technologies			
AFM Cantilever	Measures changes in amplitude of cantilever fluctuations based on immobilized bacteria on the surface of cantilever	< 1 hour	No
MAC system	Bacteria immobilized in agarose and monitored using real-time time-lapse microscopy	4-10 hours	Unsure
SERS-AST	Uses silver nanoparticles in nano-channels to identify SERS spectroscopic patterns to determine MIC	2 hours	No
fASTest	Uses microfluidic channels into which bacterial cells are trapped and monitored for growth with microscopic imaging	< 1 hour	Yes (urine)
Isothermal microcalorimetry (IMC)	Measures heat flowrate of bacterial samples in the presence or absence of antibiotics	~ 24 hours	Yes
m-EI8 system	Uses microfuldic impedance measurements to determine capacitance changes in presence of different concentrations of antibiotics	< 4 hours	Yes

Only one that is commercially available and FDA cleared

Future Applications Severe pneumonia

- 2 million severe pneumonia cases in the US and EU each year would benefit¹
- Current workflow is complicated and lengthy,
 68 hours to AST on average²
- Mortality rate of 28-69% in the US³
- Cost per US case ranges from \$10-40k per patient⁴
- Mortality rate of 29-48% in the EU⁵

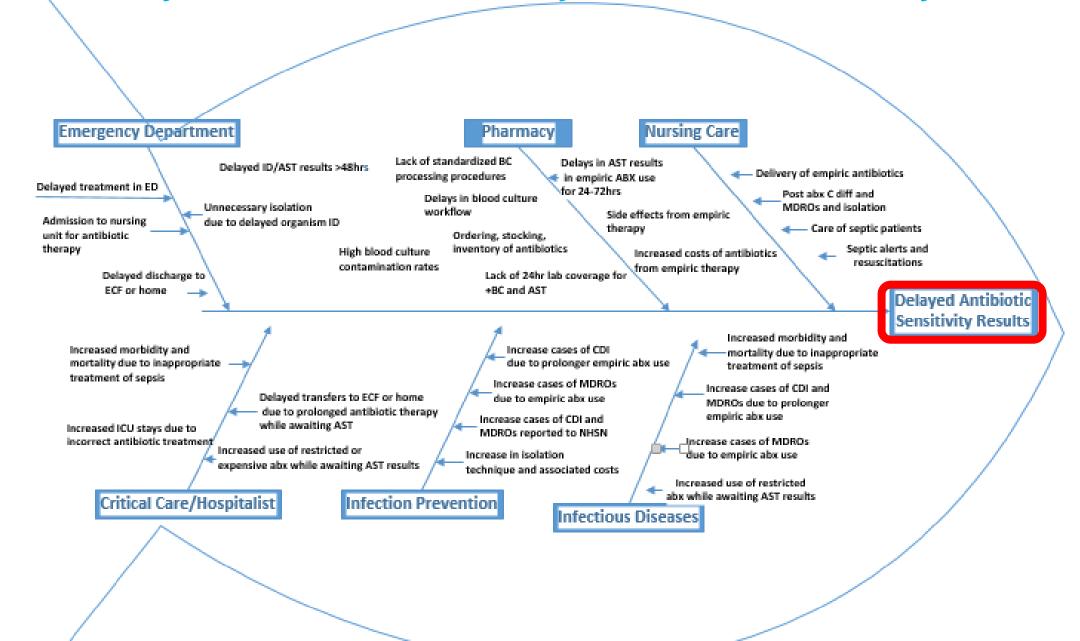
EU: CE marked for *in vitro* diagnostic use with the Accelerate Pheno™ system US: For research use only, not for use in diagnostic procedures.

¹ Company estimates (in millions) of total test opportunities based on an accumulation of various third party community and HAI infection sizing market studies

² Retrospective chart review of current respiratory standard of care time to result at a large U.S. hospital

³ Iregui MG, Kollef MH. Ventilator-associated pneumonia complicating the acute respiratory distress syndrome. Semin Respir Crit Care Med 2001; 22(3): 317-326

⁴ Safdar N, et al. Clinical and economic consequences of ventilator-associated pneumonia: A systematic review. Critical Care Medicine. 2005

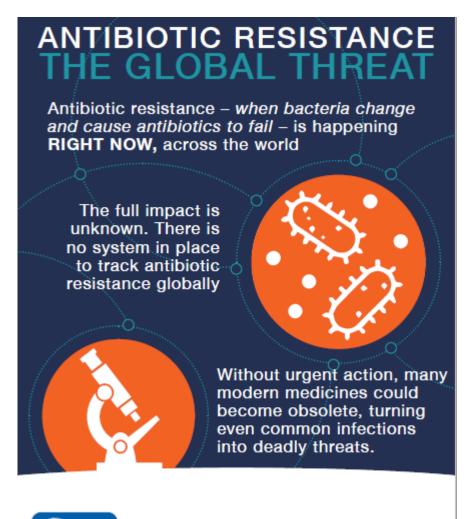

⁵ Koulenti D, et al. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis. 2016

Antibiotic Side Effects:

1) Antibiotic Resistance

2) Effects of Delayed Antibiotic Sensitivity Tests

A Myriad of Factors from Delayed Antibiotic Sensitivity Tests



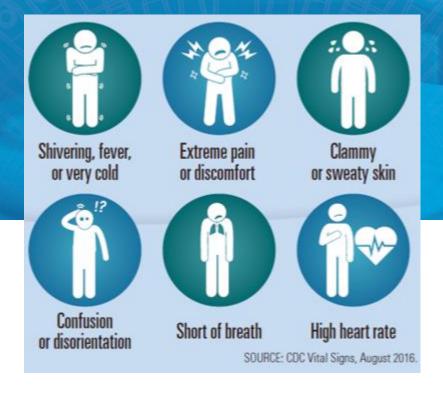
Antimicrobial Resistance

- 1) Spread from delays in Isolation Precautions
- 2) Overuse of Antibiotics

"The CDC estimates that the direct costs of antimicrobial resistance on the U.S. economy is \$20 billion annually. When you factor in the economic consequences of lost productivity, it adds an additional \$35 billion in costs"

Resistance is Spreading Across Countries

A real global crisis


December 2015
Pan-Resistant Enterobacteriaceae seen in 19
countries

mcr-1 >> Colistin resistant

- Plasmid mediated
- Easily passed between organisms (E. coli/Klebsiella)
- Pan Resistance = No drugs work

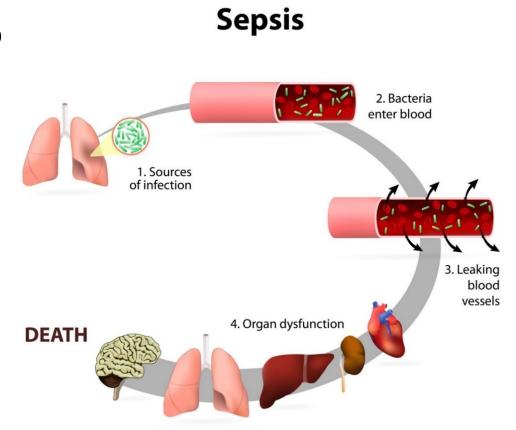
CDC - Pathogen Distribution and Antimicrobial Resistance 2011-2014 infection control & hospital epidemiology January 2018, vol. 39, no. 1

Progression of Bacteremia to Sepsis due to Inappropriate Antibiotic Therapy

Epidemiology of Sepsis


- Sepsis affects over 26 million people worldwide each year
 - Largest killer of children > 5 million each year
- > 1.6 million people in the U.S. are diagnosed with sepsis each year – one every 20 seconds and the incidence is rising 8% every year
- 258,000 people die from sepsis every year in the U.S. one every 2 minutes
- > 42,000 children develop severe sepsis each year
 - 4,400 of these children die, more than from pediatric cancers
- Every day, 38 sepsis patients require amputations

https://www.sepsis.org

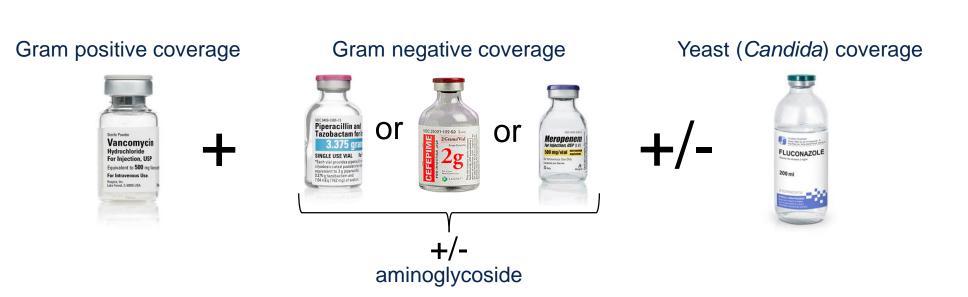

Infections Associated with Sepsis

Sepsis-3 Definitions

Sepsis is the body's overwhelming and lifethreatening response to infection that can lead to tissue damage, organ failure, and death¹

- Sepsis: Life-threatening organ dysfunction caused by dysregulated host response to infection²
- Septic Shock: Subset of sepsis with circulatory and cellular/metabolic dysfunction associated with higher risk of mortality²
- Approx 50% of patients with sepsis have positive blood cultures³
- Fatality rate for severe sepsis is about 40%, and treatment costs over \$16 billion annually³
- 1. www.cdc.gov/sepsis
- 2. JAMA. 2016;315(8):801-810. doi:10.1001/jama.2016.0287
- 3. Proc (Bayl Univ Med Cent). 2015 Jan; 28(1): 10-13.

Post Sepsis Syndrome (PSS)

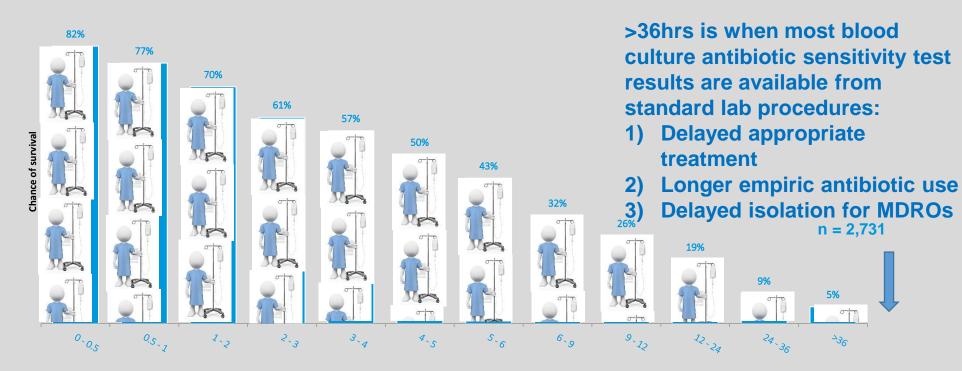

- Post Sepsis Syndrome (PSS)
 - Sepsis survivors have a shortened life expectancy
 - More likely to suffer from an impaired quality of life
 - 42% more likely to commit suicide
- ~50% of survivors suffer from post-sepsis syndrome
 - Insomnia, difficulty getting to sleep or staying asleep
 - Nightmares, vivid hallucinations and panic attacks
 - Disabling muscle and joint pains
 - Extreme fatigue
 - Poor concentration
 - Decreased mental (cognitive) functioning
 - Loss of self-esteem and self-belief

Sepsis Treatment

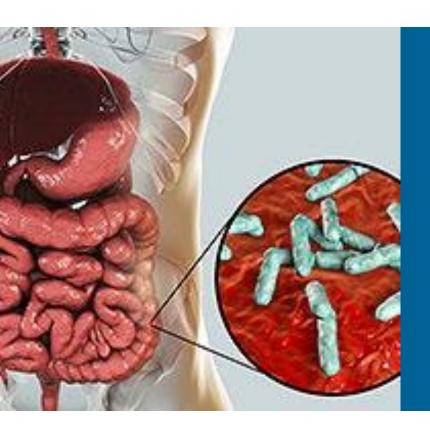
If sepsis is suspected:

- Draw lactate
- Draw 2 sets of blood cultures (prior to antibiotic administration, if possible)
- Culture suspected site of infection (urine, wound, lower respiratory tract, etc.)
- Begin empiric antibiotic therapy

Clinicians Need Fast ID and AST for Effective Antibiotic Therapy 38 people a day have amputations due to Sepsis

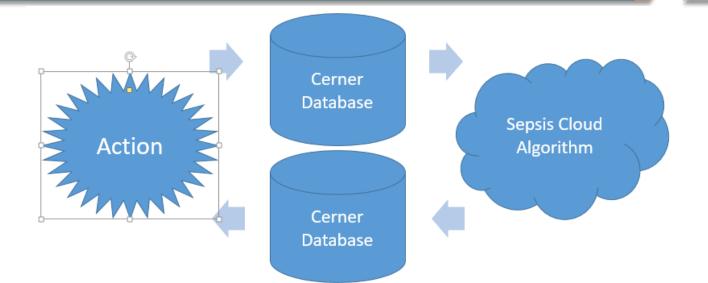

Δ.

Clinical Urgency: Surviving Sepsis


Time to Appropriate Antimicrobial Rx following Onset of Hypotension

Every hour of delay to appropriate antimicrobial therapy for patients with severe sepsis decreases the chances of survival by 7.6%¹

¹Kumar *et al.* Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. *Crit Care Med.* 2006 Jun; 34 (6):1589-96.


C. difficile from Antibiotics

Antibiotic Classes and Risk for C. difficile Infection

- Two meta-analyses found risk to be greatest with clindamycin, fluoroquinolones or cephalosporins
 - 465 studies and included 5 published between 1994 and 2011 (total, 26,435 patients) in their meta-analysis¹
 - Risk for CDI to be more than **tripled after any antibiotic exposure** (odds ratio, 3.55).
 - Treatment with clindamycin showed the strongest association with subsequent CDI (OR, 16.80)
 - 910 studies and included 8 published between 2005 and 2011 (total, 30,184 patients)²
 - Risk for CDI to be increased nearly sevenfold after antibiotic treatment (OR, 6.91)
 - Risk was greatest with clindamycin (OR, 20.43), followed by fluoroquinolones (OR, 5.65), cephalosporins (OR, 4.47)
- 1. Brown KA et al. Meta-analysis of antibiotics and the risk of community-associated *Clostridium difficile* infection. Antimicrob Agents Chemother 2013 May; 57:2326
- 2. Deshpande A et al. Community-associated Clostridium difficile infection and antibiotics: A meta-analysis. J Antimicrob Chemother 2013 Apr 25

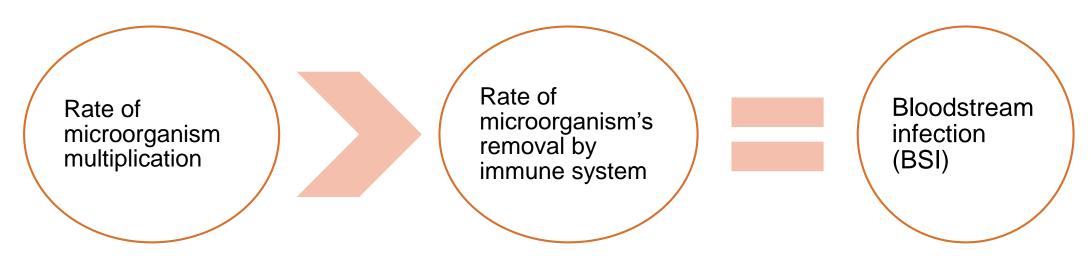
Sepsis Alert For Faster Diagnosis of Potential Sepsis

Interdisciplinary Sepsis Management Advisor – "Sepsis Alerts"

Electronic Sepsis Initiative Increases CDI

- Studied over 127,346 total patient days
 - increased antibiotic use and hospital onset (HO) CDI during sepsis care bundle implementation
 - period directly following the implementation phase accounting for the highest rate of antibiotic use

Sepsis Bundle Implementation	CDI Rate Per 10,000 Patient Days
Pre-implementation of sepsis care bundle	1.4
During implementation	1.6
After Implementation	10.8
3 yrs. After Implementation	14.4


- Cefepime was the most commonly used antibiotic
- Levofloxacin, which was not part of the sepsis care order set, was the main driver of increased antibiotic use

IP Challenges:

- 1) Preventing HAIs
- 2) Delays in Isolation Precautions due to Delayed AST Results

IP Role – Preventing HAIs that Could Progress to "Bloodstream infection"

1.6 million cases of BSI annually in the US with a 20-50% mortality rate¹

Sources of bloodstream infections:

- Percutaneous Catheters (central and peripheral)
- Genitourinary tract
- GI or Biliary tract
- Respiratory tract
- Skin and soft-tissue infection (SSTI)

Challenges with Isolation Precautions

- Delays obtaining antibiotic sensitivity test results 24-96hrs
- Patients not giving a complete history on admission
- Communication problems cause delays with housekeeping services, delivery of PPE, other equipment necessary to "put up barriers," and isolation signs for doors
- Deciding to isolate and the ability to sustain isolation depends on patient-related factors in addition to the risk of spreading infection
- Patients with complex care that need to be moved out of their specialty area to get an isolation room brings safety risks
- Clinicians' adherence to isolation precautions once initiated
- Isolation imposes "costs" on patients in terms of liberty and human rights for the public health benefit

Direct Costs of a Contact Isolation Day: A Prospective Cost Analysis at a Swiss University Hospital

- Additional mean costs per patient day were calculated for extra materials used, increased workload, and one-off isolation activities
- Cost of contact precautions was \$158.90 (95% confidence interval, \$124.90-\$192.80) per patient day

TABLE 1. Cost Items and Respective Direct Costs of Contact Precautions per Patient Day on Medical and Surgical Wards (N = 10 Patient Days)

	Direct Costs per Patient Day, \$	
(Direct) Cost Item	Mean (95% CI)	Median (IQR)
Isolation materials ^a	43.10 (33.80-52.40)	
Cleaning and disinfection materials ^a	5.30 (4.00-6.60)	
Extra workload ^{a,b}		
Nurses, assistant nurses and trainee nurses	64.40 (45.30-83.40)	
Physicians (all categories)	8.50 (5.50-11.50)	
All other hospital staff categories	16.00 (11.80-20.20)	
Total (all hospital staff categories)	88.80 (67.70-110.00)	
One-off costs ^{a,c}	21.70 (2.60-40.70)	11.90 (4.40-16.70)
Total (all cost items)	158.90 (124.90-192.80)	

Study: Isolation Outcomes at Three Academic Tertiary Care Hospitals in Toronto

- Researchers included 17,649 control patients, 737 patients isolated for methicillin-resistant Staphylococcus aureus and 1,502 patients isolated for respiratory illnesses:
- Patients on contact precautions for MRSA:
 - higher 30-day readmission rate than did controls (19% vs. 14.7%)
 - longer average length of stay (11.9 days vs. 9.1 days)
 - higher direct costs (\$11,009 vs. \$7,670)
- Patients on contact and droplet precautions for respiratory illnesses had
 - longer average length of stay (8.5 days vs. 7.6 days)
 - higher direct costs (\$7,194 vs. \$6,294)

CDC – MRSA Colonized and Infected Patients

- Based on the current evidence CDC continues to recommend the use of contact precautions (CP) for MRSA-colonized or infected patients
- CDC will continue to evaluate the evidence on CP as it becomes available
- CDC continues to work with partners to identify and evaluate other measures to decrease transmission of MDROs in healthcare settings

https://www.cdc.gov/mrsa/healthcare/clinicians/index.html

One Challenge from IP Perspective: Surveillance

- Surveillance system for bacteremia and sepsis?
 - NHSN MRSA bacteremia surveillance
 - Primary and secondary bacteremia may be on HAI dashboards
 - Secondary bacteremia due to HAIs may be on HAI dashboards
 - Sepsis readmissions reported as a healthcare acquired condition (HAC)
 - Progression from sepsis to septic shock reported as a HAC

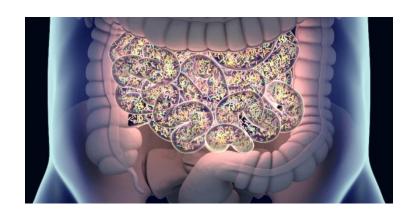
- What Additionally Should be Collected: Epidemiology of Bacteremia and Sepsis
 - Lab: unique positive blood cultures, bacteremia types, locations, organisms
 - Demographics
 - Risk
 - Antibiotic therapy
 - Length of stay
 - Mortality rate due to bacteremia/sepsis
 - Sepsis readmissions
 - Progression from septic shock to sepsis
 - C difficile in bacteremia patients on long-term empiric antibiotic therapy
 - MDROs in bacteremia patients
 - Adverse side effects
 - Cost and loss in revenue due to HACs

Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level

- Characterize the current burden, outcomes, and costs of managing sepsis patients in U.S. hospitals
- Retrospective observational study was conducted using the Premier Healthcare Database
- Patient demographics, characteristics, and clinical and economic outcomes for the index hospitalization and 30-day readmissions.
- Sepsis patient hospitalizations (2010-2016) including inpatient, general ward, and ICU (intermediate and/or step-down)
 - **2,566,689** sepsis cases (mean age of 65 years (50.8% female)
 - Overall mortality was 12.5%

sepsis without organ dysfunction 5.6% Cost:\$16,324

• severe sepsis 14.9% Cost: \$24,638


• septic shock 34.2% Cost: \$38,298

Cost of sepsis not present at admission (\$51,022)

Due to Delays in Standard Lab Procedures there is an Increased Use of Empiric Antibiotics, Adverse Side Effects, Delayed Treatment of Sepsis, Delayed Isolation of MDROs

- Disruption in microbiome in GI tract from empiric antibiotics
- Results in overgrowth of *C. difficile* and progression to infection
- Development of resistant strains to unnecessary antibiotics
- Adverse side effects, such as acute kidney injury and skin rashes, which make the patient prone to other healthcare associated infections and conditions
- High risk antibiotics: Cephalosporins, Fluoroquinolones, Clindamycin

Role of IPs, Pharmacists, Microbiologist, Infectious Disease Physicians in Collaboration with Nurses and ASP

- ✓ Microbiology education and training on how to both obtain cultures and interpret the results
- ✓ Education about infection versus colonization
- ✓ Assertiveness training to engage in discussions with the health care team
- ✓Information on IV-PO switch criteria
- ✓ Joint Commission's Medication Management standard and CMS Condition(s) of Participation on antimicrobial stewardship to guide antibiotic stewardship tools and products
- ✓ Engage C-Suite in stewardship issues and support of fast diagnostics for antibiotic sensitivity tests

Our Potential Impact On the Continuum of Care

Improved **Improved** Standardized bench turnaround time blood culture workflow to ID/AST/MIC procedures Improved services and staff utilization Improved patient satisfaction Information C-Suite and Improved drug/bug orders Reduced cost of care and standardized order sets Micro Lab **Technology Administration** Eliminates broad-spectrum ABX use Infectious Lower rates of MDROs, CDI, cross infection Reduced use of restricted ABX **FAST ID & AST** Infection Disease Reduction in isolation beds and PPE Reduced side effects of antibiotics **Prevention Physicians** Fewer outbreaks Improved bed utilization Reduced RN lab draws and drug admin Fewer cases reported to NHSN and CMS Penalties More efficient use of ICU beds/staff **Nursing Staff** Expedited transfers of +BC patients back **Pharmacy** Rapid transition to targeted therapy and Sepsis to LTACs and ASP Escalation or de-escalation **Coordinators** Reduced adverse effects of sepsis Reduced ABX cost **Critical Care** Reduced cost of care More efficient ABX Stewardship Program Reduced use More efficient Faster optimal Reduced of restricted use of ICU beds adverse effects therapy ABX of sepsis

THANK
YOU